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Abstract

This paper is concerned with the theoretical treatment of transient piezothermoelastic problem is developed for a
cylindrical composite panel composed of angle-ply laminae and piezoelectric material of crystal class mm?2, subject to
non-uniform heat supply in the circumferential direction. We obtain the exact solution for the two-dimensional tem-
perature change in a transient state, and transient piezothermoelastic response of a simple supported cylindrical
composite panel under the state of generalized plane deformation. As an example, numerical calculations are carried
out for an angle-ply laminated composite panel made of alumina fiber reinforced aluminum composite, associated with
a piezoelectric layer of a cadmium selenide solid. Some numerical results for temperature change, displacement, stress
and electric potential distributions in a transient state are shown in figures. Furthermore, the influence of thickness of
the angle-ply laminate is investigated.
© 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Recently, as the need for the material structures with new functions such as perception, decision and
acknowledge increases, smart composite structures composed of piezoelectric materials have received at-
tention. Since the piezoelectric materials have piezoelectric effects and inverse piezoelectric effects, they can
be used in the smart composite structures as sensors and as actuators. A basic element of these smart
composite structures is a laminated piezoelectric structure, and the analytical studies concerned with piezo-
thermoelasticity were developed (Tauchert et al., 2000). Furthermore, one of the causes of damage in this
laminated piezoelectric structure includes delamination. In order to evaluate this phenomenon, it is
necessary to analyze the piezothermoelastic problems taking into account the transverse stress compo-
nents. From the above concept, as a steady piezothermoelastic problem, the three-dimensional problem of
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rectangular laminated plate (Xu et al., 1995) or the problem for cylindrical bending of simply supported
laminated infinitely long plate (Kapuria et al., 1997a) were analyzed exactly. And the axisymmetric piezo-
thermoelastic problems of composite circular plates were investigated by Tauchert and Ashida (1999). As
a transient piezothermoelastic problem, we recently analyzed exactly the three-dimensional problems of
rectangular composite plate composed of cross-ply and piezoelectric laminae (Ootao and Tanigawa,
2000a), and functionally graded rectangular plate bonded to a piezoelectric plate (Ootao and Tanigawa,
2000b) taking into account all transverse stress components. However, these exact studies discuss the
problems of plates.

On the other hand, the piezothermoelastic analyses of cylindrical panels and cylindrical shells with
curvature are important as well as those of plate models. However, since their analytical treatments are very
complex and difficult, there are few exact analysis concerned with the piezothermoelastic problems of
laminated cylindrical panels and shells taking into account transverse stress components. For example, the
axisymmetric piezothermoelastic problem of a cylindrical laminated shell was reported by Chen and Shen
(1996). And the three-dimensional piezothermoelastic problems of cylindrical laminated shells were ana-
lyzed by Xu and Noor (1996) and Kapuria et al. (1997b), and the three-dimensional piezothermoelastic
problem of cylindrical laminated panel was analyzed by Kapuria et al. (1997¢). The piezothermoelastic
solution for angle-ply laminated cylindrical panel under cylindrical bending was presented by Dumir et al.
(1997). These papers, however, treated only the piezothermoelastic problems under the steady temperature
distribution. To the author’s knowledge, the exact analysis for a transient piezothermoelastic problem of
laminated cylindrical panel composed of piezoelectric material has not been reported.

In the present article, we have treated exactly the transient piezothermoeclastic problem of a simply
supported cylindrical composite panel due to a non-uniform heat supply in the circumferential direction. It
is assumed that the cylindrical composite panel is composed of angle-ply laminate and piezoelectric ma-
terial of crystal class mm?2.

2. Analysis

We consider an infinitely long, angle-ply laminated cylindrical panel to which a piezoelectric layer of
crystal class mm2 is perfectly bonded, the length of the side in the circumferential direction of which is
denoted by 0y. The combined panel’s inner and outer radii are designated ¢ and b, respectively. Moreover, a
is the coordinate of interface between the angle-ply laminate and the piezoelectric layer. Throughout this
article, the quantities with subscripts i = 2,...,N + 1 and i = 1 denote those for ith layer of the angle-ply
laminate and piezoelectric layer, respectively. It is assumed that each layer of the angle-ply laminate
maintains the orthotropic material properties and the fiber direction in the ith layer is alternated with ply
angle ¢, to the z-axis. It is assumed that the principal axes of the piezoelectric layer are parallel to the axes
of the cylindrical coordinate, and the piezoelectric layer is poled in the radial direction.

2.1. Heat conduction problem

We assume that the laminated cylindrical panel is initially at zero temperature and is suddenly heated
partially from the outer surface by surrounding media, the temperature of which is denoted by the function
Tf5(0). The relative heat transfer coefficients on the inner and outer surfaces of the combined panel are
designated 4. and #;, respectively. We assume that the edges of the combined panel are held at zero
temperature. Then the temperature distribution shows a two-dimensional distribution in » — 0 plane, and
the transient heat conduction equation for the ith layer and the initial and thermal boundary conditions in
dimensionless form are taken in the following forms:
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In expressions (1)—(9), we have introduced the following dimensionless values:
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where 7; is the temperature change of the ith layer; x,; and k4 are thermal diffusivities in the r and 0 di-
rections, respectively; 4,; is thermal conductivity in the r direction; ¢ is time; and 7j, ko, and 4, are typical
values of temperature, thermal diffusivity and thermal conductivity, respectively. In Eq. (8), the subscripts L
and T denote the fiber and transverse directions, respectively. Moreover, r; (i = 1,2,...,N) are the coor-
dinates of interface of the laminated cylindrical panel.

Introducing the finite sine transformation with respect to the variable 6 and Laplace transformation with
respect to the variable 7, the solution of Eq. (1) can be obtained so as to satisfy the conditions (2)—(7). This
solution is shown as follows:

Z a(p,7)sing,0; i=1-(N+1) (11)
=1
where
_ 211 2ex p _
Tulp,t) =4 F @ +Bp ) + Z {4iJ,, (B.;p) + BiY,, (Bip)} (12)

where J,() and Y, () are the Bessel function of the first and second kind of order y, respectively; 4 and F are
the determinants of 2(N + 1) x 2(N + 1) matrix [ay] and [ey], respectively; the coefficients 4; and B, are
defined as the determinants of the matrix similar to the coefficient matrix [ay], in which the (2i — 1)th
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column or 2ith column is replaced by the constant vector {c; }, respectively; similarly, the coefficients A and
B are defined as the determinants of the matrix similar to the coefficient matrix [ey], in which the (2i — 1)th
column or 2ith column is replaced by the constant vector {c;}, respectively. Furthermore, the non-zero
elements ay and ¢, of the coefficient matrix [ay] and the constant vector {¢,} are given as follows:

ay = Pty 1 (ruc) + (Hc - %)Jl (Byue),

_ Y _
a2 = Bk () + (H =21, (),

aw2ov+1 = (Hp + VN+|)J~;N+1 (ﬁzvﬂﬂ) - ﬁN+I.uJVN+1+1 (ﬁNHﬂ)a
AON422N+2 = (Hy + VN+1)Y"/N+1 (ﬁN+1N) - ﬂN+l:uY”/N+l+1 (ﬂNJrlﬂ)a
A2i2i-1 = Jy,-(ﬁfﬂ&% W2 = Yv,-(ﬁ,-ﬂRi),

Wipiv1 = —Jy,,, (ﬁi+1.uRi)7 @ipit2 = — Y, (ﬁzﬂﬂR) (13)
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s = z,,{ Y, (BR) ~ BBk
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" ’yl
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On the other hand, the element ¢;; of the coefficient matrix [e;;] is omitted here for the sake of brevity. In
Eq. (13), g represents the parameter of finite sine transformation with respect to the variable 6 and a symbol
() represents the image function. In Egs. (11) and (12), 4'(y;), g, B; and y; are

dA kTE 1 R@i
(,u,) d,u 9 0, B = % Vi =/ kﬂflk (15)
and p, represent the jth positive roots of the following transcendental equation
Alp) =0 (16)

2.2. Piezothermoelastic problem

We develop the analysis for transient piezothermoelasticity of a simply supported cylindrical composite
panel composed of angle-ply laminae and piezoelectric material as a generalized plane deformation
problem.

In the case of the piezoelectric layer of crystal class mm?2, the stress—strain relations are expressed in
dimensionless form as follows:
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In the case of the angle-ply laminate (i = 2—(N + 1)), the stress—strain relations for the global coordinate
system (r, 0,z) are expressed in dimensionless form as follows:
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where

B = O + Opylos + O30 + O s Bos = Oroes + Oy + Oy + O i
B = Q138 + Oyl + Oy + Oslimis By = Ores + Ongiios + Orgii + Ol 1 = 2-(N +1)
(20)
The constitutive equations for the electric field in dimensionless form are given as
D, = @\&,1 + &8 + €381 + 1 E, + 1Ty, Dy =@, +,Ey, D.=es,. +E: (21)

We assume the displacement components for the global coordinate system as the state of a generalized
plane deformation in the following forms:

Uy = ari(pa 0)7 g = a(ﬁ(pv 0)7 u,; = ﬁzi(ﬂ, 0) (22)

The relations between the electric field intensities and the electric potential ¢ in dimensionless form are
defined by

Er = _d;,pv EU = _pilqg,é)’ Ez = —(]52 =0 (23)

where a comma denotes partial differentiation with respect to the variable that follows. If the free charge is
absent, the equation of electrostatics is expressed in dimensionless form as follows:

Er,p + p_l(Br +56,9) - 0 (24)
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The displacement-strain relations for the ith layer are expressed in dimensionless form as follows:

Emi = Upip, Egpi = ,0_1(77!911,6 ), &i=0, 7u,= p_luziﬁa Visi = Usirp,

Voor = p (g — ) +lgip;  i=1-(N+1) (25)
The equilibrium equations for the ith layer are expressed in dimensionless form as follows:

Grrip + P ' Groio + P (Gri — Gonr) =0,  Groip + p ' Gooio +2p G = 0,

Grip +p (Gosip +6,2) =0; i=1-(N+1) (26)
In expressions (17)—(26), the following dimensionless values have been introduced:
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where oy;; are the stress components, &y; are the normal strain components, y,, are the shearing strain,
(1, ug;, u;) are the displacement components, oy; and oy,; are the coefficients of linear thermal expansion,
Cy; are the elastic stiffness constants, O;,; are the transformed elastic stiffness constants, D; are the electric
displacement components, ¢, are the piezoelectric coefficients, 1, are the dielectric constants, p; is the
pyroelectric constant, d; is the piezoelectric modulus and oy and ¥; are the typical values of the coefficient of
linear thermal expansion and Young’s modulus of elasticity, respectively.

In the case of the piezoelectric layer, substituting Egs. (23) and (25) into Egs. (17) and (21), and later into
Egs. (24) and (26), the governing equations of the displacement components and the electric potential in
dimensionless form are written as
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In the case of the angle-ply laminate (i = 2—(N + 1)), substituting Eq. (25) into Eq. (19), and later into
Eq. (26), the governing equations of the displacement components in dimensionless form are written as
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Y. Ootao, Y. Tanigawa | International Journal of Solids and Structures 39 (2002) 5737-5752 5743
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If the inner and outer surfaces of the combined panel are traction free, and the interfaces of the each

layer are perfectly bonded, then the boundary conditions of inner and outer surfaces and the conditions of
continuity at the interfaces can be represented as follows:

p= E? O] = 07 a1 = 07 01 = 0
P = 17 O_-rr,N-H = 07 6-r0,N+l = 0; O_-rz,N-%—l - 0 (35)
P = Rla 6-rri - 67‘r,i+17 6-r()i - Oir()j-%—la 6-rzi - 6-rz,i+17

u,; = ﬁr,lJrla Ug; = aé)«,H»la u; = ﬁz,iJrl; i=1-N

The boundary conditions in the radial direction for the electric field are expresses by
p=c¢ D=0, p=a ¢=0 (36)

We now consider the case of a simply supported panel and assume that the edges of the piezoelectric layer
are electrically grounded. The boundary conditions are given as follows:

0 =0, 0 Gop =0, 60=0, ;=0 ¢=0 (37)

We assume the solutions of the displacement components and electric potential in order to satisfy Eq. (37)
in the following form:

ari - Z{Urcik(p) + Urpik(p)} Sin qkea
k=1

;= Y {Useie(p) + Uspie(p)} c0s 4.0,
k=1

azi = Z{Uzcik(p) + Uzpik(P)}COS‘IkQQ = 1_(N + 1)7
k=1

B = {0ulp) + ulp)} singi0

In expression (38), the first term on the right side gives the homogeneous solution and the second term of
right side gives the particular solution. However, since Eq. (30) has not the term of the temperature, the
particular solution U, (p) of the piezoelectric layer does not exist. We now consider the homogeneous
solution and introduce the following equation:

p = exp(s) (39)

Substituting the first term on the right side of Eq. (38) into the homogeneous expression of Eqgs. (28)—(31),
and later changing a variable with the use of Eq. (38), we have for the piezoelectric layer

— _2 — — — — _ — J—
[Ci1D” — (Cazi + Co6iq1)|Ureir — [(Crai + Co6:)D — (Cai + Cosi)|qx Usein

+ (é]ﬁz — ézE — ééq;%)éck = 0, i=1 (40)

— =2

[(Ciai + Ce6:)D + Cazi + Cosilqi Uneir + [CosD” — (Cosi + Coniq)| Upein
=+ [(é() + éz)B + éé]qubck = 0, i= 1 (41)
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We show U,.ir, Upeir, U.cir and @, as follows:

(Urcikv U(?cika Uzclk7 ¢ck) = (Uroc,‘kv U(g)cjka Uzocik? ¢S]() eXp(/L‘S); i= 1 (45)

Substituting Eq. (45) into Eqgs. (40), (41) and (43), the condition that a non-trivial solution of
(U0, U, ®°,) exists leads to the following equation:

P +d"pi+ V=0 (46)
where
i i) (i i)\2
=2 B0 0o w 7
340) 3(40)
, 2(BDY £ 94D RO ) 4 27D (4))?
27(40)
AY = Cei(et + 171,Ch1y),
. _ = J— —2 — — _ = —_—
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+ Crier + és)z —2¢18,(C12 + Ce61) — 2C 108186 + é%EZZi]

+ Coil(Crii + Co)iy + €] + &), (48)

CY = —Cei(Conifly + &)(q; — 1)2 +24;(q; — Des(Crzer — Ciey)
p— J— _ = _ —2 J— J— J— J— J— _

— q;(Cnii + Coi)(€g + 1,Coe1) + 43 [11(Cly; + 2C12iCesi — Ci1iCai) + 2C 158,

DY = Crugi(€g + 71,Co61) (q; — 1)2
We now introduce the following expression:
(f0? | (d)?
g=Y) &) 49
i (49)

From Eq. (46), there might be three distinct real roots, three real roots with at least two of them being
equal or a real root in conjunction with one pair of conjugate complex roots depending H; is negative,
zero or positive, respectively. For instance, U,.;(p), Upeir (p) and @ (p) can be expressed as follows when
H; <0:

3

Urcik (,0) = Z Uchik(p)ﬂ Uﬁcik(p) = Z UGJcik(p)’ (pck (P) = Z @Zk(p) (50)

J=1
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where
U(p) = F p™ + 8} p7
Upeir (P) = Liis (mJi)E(Ji)PmJ" + Ly (—mJt)Sg)meJ’
@/ (p) = Ruus (ms)ES ™ + Ry (—mz) S\ p =, (51)
B0 B0
my = PiJer fp,/+3A< >0
Uni(p) = E‘.(]i) cos(myiInp) + Sf}) sin(my; In p),
Uy (p) = {Re[Lyy (jmy)] cos(my In p) — Im|[Ly; (jmy)] sin(my; In p)}Frg)
+ {Im[Lyy (jmy;)] cos(my; In p) + Re[Lygy (jmyy)] sin(my; In p) 1S,
@), (p) = {Re[Ryiy (jmyi)] cos(my; In p) — Im[Ryy, (jm,:)] sin(m; In P)}E(Ji) (52)
+ {Im[Ryy (jm,i)] cos(my; In p) + Re[Ryy (jmyi)] sin(m; In p)}SZ),
B\ B
my = (pu+3A > 1fp,-1+m<0

In Egs. (51) and (52)

Liy(x) = IkJ( ){X [e1(Ciai + Cesi) — Ci1i(es + &)
+x7[e(Cai + Ces:) — @2(Crai + Cesi) — Cii)
+ x[(e6Ci — 2:Ce6:) + q; (€:Ce61 — €5C12)] + Coits(1 — q7) },
Ryis(x) = T )[ancémx +x*{[(Crai + Cesi)’ (53)

— C11;Ci — Céél]q Co6i(Crii + Co) } + ConiCoi(1 — ¢2)7],
Lis(x) = —Cggierx* + Cesierx® + x*{qi[Caier + Cesies — (Ciai + Cei) (€2 + &6)] + Cesi1 }
+ X{q,f [66(Cri — C12) + €Ce6:] — €2Ce6i} + EZZiéGQi(l - qi)
In Eq. (52), j, Re[ ] and Im[ ] are 1mag1nary umt j= Vv —1, real part and imaginary part, respectively.
Furthermore, in Eqgs. (51) and (52), F, J ) and S,J are unknown constants. The case of H; =0 or H; > 0 is
omitted here for the sake of brevity.

Substituting Eq. (45) into Eq. (42), the condition that non-trivial solutions of U, exist leads to the
following equation:

Ai=tmy; =1 (54)

where
my =[S g i1 (55)
Cssi

Then U,.1;(p) can be expressed as follows:
Usek(p) = Ep™ +S.p™™ (56)
In Eq. (56), F, and S, are unknown constants.

In the case of angle-ply laminate, U,.(p), Ui (p) and U,.4(p) are obtained in the same way as the case
of the piezoelectric layer. Assuming that
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(Ureits Ugeit, Useir) = (U,

reik?

Up.s U ) exp(lis); i =2-(N+1) (57)
we get the same equation of Egs. (46) and (47). In this case, Eq. (48) exchanges to the next equation.
AV = @;31' [@;5[@24[ - (@Zsi)Z]a
BY = qi@;[[@;i@;i - (Q;i)z] + quZM [Q;i@;i - (@;Gi)2]
+ (@;31' + @;21' - zqié;i)[Q;Si@ZM - (@:51-)2] - Zqi@ZSi(@;i@;éi - @;3,@;@-)7
Y = [(J?@;a + 2%% (qi - 1)@:51'] (@;21‘@;61' - §;3f@;6i) - (I?@;si@zf@zm - (5261’)2] (58)
+ (O, +204,) (053,056 — 036:02s)) — Ons(d — 1) (05,0, — (Oss))’]
+ 4;04il(036)” + (02)” — 0330561 — 0220061
DY = gi(q; = 1)’ 04405045 — (Ore)’]
Therefore (Ui, Upeir, Uzeix) Of angle-ply laminate are obtained as the function systems like (Ui, Upeir, Pei)
of the piezoelectric layer (i = 1). (U,eir, Upeir, Ueix) Of angle-ply laminate had been obtained in the previous
paper (Ootao and Tanigawa, 2002), and their details are omitted here.

Next, in order to obtain the particular solution, we use the series expansions of the Bessel function as
follows:

00 (x/2)2n+y
; nl(y+n+1) (59)
Y,(x) = sinlyn [cos ymJ,(x) — J_,(x)] if y # integer (60)

Since the order 7y; of the Bessel function in Eq. (12) is not integer in general except ply angle ¢, = 0°, Eq.
(12) can be written as the following expression using Egs. (59) and (60).

Tulp,© Z{am W by (2)p P} (61)

Expressions for the functions a,;(t) and b,,(t) in Eq. (61) are omitted here for the sake of brevity. We
assume U, (p), Unic(p), Uspir(p) and @ (p) as follows:

Urpik(p) Z (famp2n+m i+1 +f p2n V,+1) i = 1—(N + 1)’
n=0
Unpic(p) = > (8anil™ " + goip™ " ); i = 1-(N + 1),
" (62)
(]zpik(p) = Z (hanip2n+},i+] + hlznip2n7yi+l>; i= 2_(N + 1)7
n=0
‘ppk(p) Z (lampzn+y,-+1 + l.hm_pznﬂ',-+1); i—=1

Il
=}

n

Substituting Eqgs. (11), (61), (62) and the second term of right side of Eq. (38) into Egs. (28), (29), (31) or
Egs. (32)—(34), and later comparing the coefficients of functions with regard to p respectively, the constants
fania fbnia 8anis 8bnis hania hbnia iani and ibni can be obtained.

Then, in the case of angle-ply laminate, the stress components can be evaluated by substituting the first
three of Eq. (38) into the Eq. (25), and later Eq. (19). In the case of the piezoelectric layer, the stress
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components and the electric displacements can be evaluated by substituting Eq. (38) into the Egs. (23) and
(25), and later into Egs. (17) and (21). The unknown constants in the homogeneous solutions such as Egs.
(51), (52) and (56) are determined so as to satisfy the boundary conditions (35) and (36).

3. Numerical results

We consider the piezoelectric layer composed of a cadmium selenide solid and the angle-ply laminate
composed of alumina fiber reinforced aluminum composite. We assume that each layer of angle-ply lam-
inated panel consists of the same orthotropic material, and consider a two-layered anti-symmetric angle-ply
laminated panel with the fiber-orientation (60°/—60°) and the same thickness. We assume that the combined
cylindrical panel is heated by surrounding media, the temperature of which is denoted by the symmetric
function with respect to the center of the panel (0 = 0,/2). Then, numerical calculative parameters of heat
condition and shape are presented as follows:

H,=H.=10, T,=1, 0,=90° a=0.7,0.850.95 a—c=0.05,
£H(0) =0 —=02/0)H(0, —|0]), 0, =150 =0—0,/2 (63)

where H (x) is Heaviside’s function. The material constants (Ootao and Tanigawa, 2000a) are taken as for
alumina fiber reinforced aluminum composite,

Ky =411 x 107 m?/s, k7 =29.5x10"°m?/s, o, =7.6x107¢ K",
or =140 x 106 K, 7, =105 W/mK, iy =75 W/mK, ¥, =150 GPa,
YT =110 GPa, GLT = 35GPa, Gn‘ =41 GPa, Vir = 0337 Vi = 033, Vr, = 0.242 (64)

and for cadmium selenide,

1 1

Q o.{)‘s\\//(’).(l)s Q \\ //
0.951? o 0957 0.2 0
0.1 i
0.15
1 0.

0.9 0.9+

0.85 0.85-4
0.05| 0 110.05

0.8+ 0.8+
0.75+4 0.754

0.7 0.7

7=0.005 & T=o0

0.65 T T 0.65

1 I I

1 1 1 T I 1
0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90
(a) 61[°] (b) 61°]

Fig. 1. Temperature change distribution in a (a) transient state (t = 0.005) and (b) steady state (t = o).
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ap =0, =4396x 107 K, o =2458x10°K™!, C;, =83.6 GPa, Cy» = Cs; =74.1 GPa,

Cy; =452 GPa, Cj;=Cj;3 =393 GPa, Ceg =13.17 GPa, e =0.347 C/m’,

e =e;=—0.16 C/m?, ¢, =—0.138 C/m?, u, =9.03 x 107" C?/Nm?,

n,=825x107"" C*/Nm* p; = —-2.94 x 10~ C/m’K,

d=-392x10"2C/N 2y =86 W/mK, 1 =15} (65)
where G and v are the shear modulus of elasticity and Poisson’s ratio, respectively. Since the coefficients of

thermal conductivity for cadmium selenide could not be found in the literature, the following values are
assumed:

0.3 r T T T T T T
I ---- =0.005
I — --7=0.01
0.2 ~_ -—- :=o.oz ]
I oo
0.1 -
o [
Ib 0 i_‘
-0.1 -

2 1 I 1 ]
0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
P

Fig. 2. Variation of the thermal stress Gy in the radial direction (6 = 6,/2).

o 'Y 0-0-0-0~(00-0——— ] 003 —
0.95 T=e [+~ z=0.005
| © 002 |ToiId
0.9- : = /
0.01 | Ce ]
0.85- o .
lo ok ]
osd——— | Crree :
0 P o i
0.75 -0.01 ¢ ]
-0.01 ! L .
0.7 E——002_> -0.02 | p=0.
001 ; 6,=90°
0.65-— . -
0 5 10 15 20 25 30 35 40 45 003 0 20 o
(a) 0 [0] (®) 0 [o]

Fig. 3. Thermal stress 6,4: (a) distribution in a steady state (¢ = oo) and (b) variation on the interface (p = 0.7).
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ko =328 x 107 m?/s, K. = 1.5k (66)

The typical values of material properties such as «, 49, %y and Y, used to normalize the numerical data, are
based on those of cadmium selenide as follows:

Ko = Ky, )vo = /19, oy = g, YO =42.8 GPa (67)

Figs. 1-5 show the numerical results for @ = 0.7. Fig. 1 shows the results of temperature change. The
distribution in a transient state (t = 0.005) is shown in Fig. 1(a) and the distribution in a steady state is
shown in Fig. 1(b). As shown in Fig. 1, the temperature rise can clearly be seen in the heated region. Fig. 2
shows the variation of the normal stress G4y at the midpoint of the panel. From Fig. 2, discontinuities of
stress occur on the interfaces. In order to valuate the phenomenon of delamination, it is necessary to focus

0.015
_ we- £=0.005
Iot | p=0.7 —_- §=o.o1
- 6,=90° — = =002
‘ 0 7 =00
0.01 - |
e EREN
t / N
I y N ]
0005- /7 N\
/ o —
L . A
7 - d A
r /S .
0 o - I o L ] T -
0 30 0
0[]

Fig. 4. Variation of the thermal stress &, on the interface (p = 0.7).

e m——
r [P — t=0005
0.04 -
o i
0 -
-0.04 p=085 |
6,=90°
-0.08 L l
0 30
0[]

Fig. 5. Variation of the thermal stress ,. on the interface (p = 0.85).
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attention on transeverse stresses. Then, Figs. 3-5 show the variations of the shearing stress ,9, the normal
stress @, and the shearing stress 4,., respectively. The distributions in a steady state are shown in Fig. 3(a),
and the variation on the interface (p = 0.7) is shown in Fig. 3(b). Since the shearing stress ,4 is anti-
symmetric with respect to 6 = 45° under the condition of Eq. (63), Fig. 3(a) shows a range of 0-45°. From
Fig. 3(a), it can be seen that the stress of g,y shows the maximum value on the interface between the
piezoelectric layer and the angle-ply laminae (p = 0.7). Fig. 4 shows the variation on the interface (p = 0.7),
because the tensile stress of G, shows the maximum value on the interface (p = 0.7). Fig. 5 shows the
variation on the interface (p = 0.85), because the stress of .. shows the maximum value on the interface
between the second layer and the third layer (p = 0.85). As shown in Figs. 3(b), 4 and 5, it can be seen that

Table 1

Effect of thickness of angle-ply laminate for t = 0.01
7=0.01 a=0.7,¢=0.65 a=0.851¢c¢=038 a=095¢=09
T(p=1,0=45° 0.1802 0.2202 0.3495
T(p=r¢,0=45° 0.06127 0.1414 0.2994
u.(p=1,0=45° 0.1589 0.2788 1.544
u.(p =¢c,0 =45°) 0.02838 0.1653 1.464
uy(p=1,0=0°) —-0.09606 —-0.09781 0.3839
uy(p=¢,0=0°) —-0.02733 —-0.009072 0.6065
w(p=1,0=0° —-0.01007 —-0.007609 —-0.007982
u.(p=2¢c,0=0°) —0.005683 —0.006373 —-0.007861
G, (p=a,0=45°) 0.004502 0.006424 0.005593
Goo(p = 1,0 =45°) 0.01184 0.1469 0.4567
Goo(p = ay,0 = 45°) —-0.1215 —-0.3181 -0.7617
Goo(p =¢,0 = 45°) 0.08357 0.1430 —-0.09534
G-(p=1,0=45°) —-1.193 -1.412 -2.162
G..(p=c¢,0=45°) —-0.01864 —-0.06751 —0.3383
Go(p=a,0=30° —-0.09362 —-0.01898 —-0.01794
G-(p=a+(1—-a)/2,0=30°) —0.04709 —0.04594 —0.03346
¢ x 103(p =¢,0 =45°) 0.1278 0.2765 0.4729

Table 2

Effect of thickness of angle-ply laminate for 1 = oo
T=00 a=0.7,¢=0.65 a=0.85¢=038 a=0095¢=09
T(p=1,0=45° 0.2294 0.2946 0.4285
T(p=¢,0=45°) 0.1198 0.2257 0.3867
u.(p=1,0=45° 0.1454 0.3171 1.964
u.(p=c,0=45° —-0.05199 0.1534 1.865
wy(p =1,0=0°) —-0.1877 —-0.2050 0.4640
uy(p =¢,0 =0°) —-0.1247 —-0.09157 0.7592
w(p=1,0=0° —-0.01285 —-0.01028 —-0.01053
u.(p=2¢,0=0° —0.003950 —0.007483 -0.01024
G(p = a,0 = 45°) 0.01105 0.01148 0.007281
Goo(p = 1,0 =45°) 0.08559 0.2527 0.5731
Goo(p = a,0 = 45°) —0.1738 -0.4747 —-0.9470
Goo(p = ¢, 0 = 45°) 0.2058 0.2388 —0.1144
a.(p=1,0=45°) —1.494 —-1.869 —2.646
G.(p=¢c,0=45° —-0.01563 —-0.1026 —0.4328
G0(p =a,0 =30°) —-0.01686 —-0.02476 —-0.02005
g-(p=a+(1—a)/2,0=30° —-0.06099 —-0.05578 —-0.03721
¢ x 10°(p =¢,0 = 45°) 0.2583 0.4360 0.6032
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the values of shearing stresses a,9 and &, and normal stress ,, rise as the time proceeds and have maximum
value in the steady state. Figs. 3(b), 4 and 5 show that the values of shearing stress &,. are larger than those
of normal stress G,, and shearing stress &,4.

In order to examine the influence of thickness of angle-ply laminate, the numerical results for a = 0.7,
0.85, 0.95 are shown in Tables 1 and 2 and Figs. 6 and 7. Tables 1 and 2 show the typical values of
temperature change, displacement, stress, and electric potential for a transient state (t = 0.01) and ones for
the steady state, respectively. In Tables 1 and 2, 649 at p = a, shows the value of the second layer. From
Tables 1 and 2, the values of temperature change increase when the radial ratio a increases, that is, when the
thickness of angle-ply laminate decreases. Fig. 6 shows the variations of thermal displacement. The vari-
ation of the thermal displacement #, on the cross-section # = 0° is shown in Fig. 6(a) and the variation of

0.8 2 — — .
s 06 ) L £=0.005
: 15[ T oo
0.4 0=6,/2 R
11 g,=90° )
0.2 [ a=0.95,c=0.9]
i 05| a=0.85c=08-
or [ )
02! 0 ——
I a=0.7,c=0.65

4 L L I I ] I | ] 5 L | i L |
0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
(@) P (b) p

Fig. 6. Variation of the thermal displacement (a) #, in the radial direction (0 = 0°) and (b) #, in the radial direction (6 = 0,/2).
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Fig. 7. Variation of the electric potential in the radial direction (6 = 6,/2).
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the thermal displacement #, at the midpoint of the panel (0 = 0y/2) is shown in Fig. 6(b). As shown in
Fig. 6, it can be seen that the values for a = 0.95 are considerably larger than ones for a = 0.7 and @ = 0.85.
And the variations with time vary depending on the radial ratio a. Fig. 7 shows the variation of the
electric potential at the midpoint of the panel. From Fig. 7, the values of electric potential increase when the
radial ratio a increases.

The numerical results were obtained under the condition that the upper limits of series with respect to k
and n are taken as k = 16 and n = 130, and the maximum of eigenvalue y; is 100.

4. Conclusions

In the present article, we obtained the exact solution for the transient temperature and transient piezo-
thermoelastic response of a simply supported cylindrical composite panel composed of angle-ply laminate
and piezoelectric material of crystal class mm2 due to a non-uniform heat supply in the circumferential
direction. As an illustration, we carried out numerical calculations for the angle-ply laminated cylindrical
panel composed of alumina fiber reinforced aluminum composite, associated with a piezoelectric layer of a
cadmium selenide solid and examined the behaviors in the transient state for temperature change, dis-
placement, stress, and electric potential distributions. Though numerical calculation were carried out for a
two-layered anti-symmetric angle-ply laminated cylindrical panel associated with a piezoelectric layer,
numerical calculation for hybrid laminated cylindrical panel with an arbitrary number of layer and arbi-
trary fiber orientation angles, associated with a piezoelectric layer can be carried out. Moreover, we con-
clude that we can evaluate not only all stress components of the combined cylindrical panel, but also the
electric field of the piezoelectric layer quantitatively in a transient state.
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