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Abstract

This paper is concerned with the theoretical treatment of transient piezothermoelastic problem is developed for a

cylindrical composite panel composed of angle-ply laminae and piezoelectric material of crystal class mm2, subject to

non-uniform heat supply in the circumferential direction. We obtain the exact solution for the two-dimensional tem-

perature change in a transient state, and transient piezothermoelastic response of a simple supported cylindrical

composite panel under the state of generalized plane deformation. As an example, numerical calculations are carried

out for an angle-ply laminated composite panel made of alumina fiber reinforced aluminum composite, associated with

a piezoelectric layer of a cadmium selenide solid. Some numerical results for temperature change, displacement, stress

and electric potential distributions in a transient state are shown in figures. Furthermore, the influence of thickness of

the angle-ply laminate is investigated.
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1. Introduction

Recently, as the need for the material structures with new functions such as perception, decision and
acknowledge increases, smart composite structures composed of piezoelectric materials have received at-

tention. Since the piezoelectric materials have piezoelectric effects and inverse piezoelectric effects, they can

be used in the smart composite structures as sensors and as actuators. A basic element of these smart

composite structures is a laminated piezoelectric structure, and the analytical studies concerned with piezo-

thermoelasticity were developed (Tauchert et al., 2000). Furthermore, one of the causes of damage in this

laminated piezoelectric structure includes delamination. In order to evaluate this phenomenon, it is

necessary to analyze the piezothermoelastic problems taking into account the transverse stress compo-

nents. From the above concept, as a steady piezothermoelastic problem, the three-dimensional problem of
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rectangular laminated plate (Xu et al., 1995) or the problem for cylindrical bending of simply supported

laminated infinitely long plate (Kapuria et al., 1997a) were analyzed exactly. And the axisymmetric piezo-

thermoelastic problems of composite circular plates were investigated by Tauchert and Ashida (1999). As

a transient piezothermoelastic problem, we recently analyzed exactly the three-dimensional problems of
rectangular composite plate composed of cross-ply and piezoelectric laminae (Ootao and Tanigawa,

2000a), and functionally graded rectangular plate bonded to a piezoelectric plate (Ootao and Tanigawa,

2000b) taking into account all transverse stress components. However, these exact studies discuss the

problems of plates.

On the other hand, the piezothermoelastic analyses of cylindrical panels and cylindrical shells with

curvature are important as well as those of plate models. However, since their analytical treatments are very

complex and difficult, there are few exact analysis concerned with the piezothermoelastic problems of

laminated cylindrical panels and shells taking into account transverse stress components. For example, the
axisymmetric piezothermoelastic problem of a cylindrical laminated shell was reported by Chen and Shen

(1996). And the three-dimensional piezothermoelastic problems of cylindrical laminated shells were ana-

lyzed by Xu and Noor (1996) and Kapuria et al. (1997b), and the three-dimensional piezothermoelastic

problem of cylindrical laminated panel was analyzed by Kapuria et al. (1997c). The piezothermoelastic

solution for angle-ply laminated cylindrical panel under cylindrical bending was presented by Dumir et al.

(1997). These papers, however, treated only the piezothermoelastic problems under the steady temperature

distribution. To the author�s knowledge, the exact analysis for a transient piezothermoelastic problem of

laminated cylindrical panel composed of piezoelectric material has not been reported.
In the present article, we have treated exactly the transient piezothermoelastic problem of a simply

supported cylindrical composite panel due to a non-uniform heat supply in the circumferential direction. It

is assumed that the cylindrical composite panel is composed of angle-ply laminate and piezoelectric ma-

terial of crystal class mm2.

2. Analysis

We consider an infinitely long, angle-ply laminated cylindrical panel to which a piezoelectric layer of

crystal class mm2 is perfectly bonded, the length of the side in the circumferential direction of which is

denoted by h0. The combined panel�s inner and outer radii are designated c and b, respectively. Moreover, a

is the coordinate of interface between the angle-ply laminate and the piezoelectric layer. Throughout this
article, the quantities with subscripts i ¼ 2; . . . ;N þ 1 and i ¼ 1 denote those for ith layer of the angle-ply

laminate and piezoelectric layer, respectively. It is assumed that each layer of the angle-ply laminate

maintains the orthotropic material properties and the fiber direction in the ith layer is alternated with ply

angle /i to the z-axis. It is assumed that the principal axes of the piezoelectric layer are parallel to the axes

of the cylindrical coordinate, and the piezoelectric layer is poled in the radial direction.

2.1. Heat conduction problem

We assume that the laminated cylindrical panel is initially at zero temperature and is suddenly heated

partially from the outer surface by surrounding media, the temperature of which is denoted by the function

TbfbðhÞ. The relative heat transfer coefficients on the inner and outer surfaces of the combined panel are

designated hc and hb, respectively. We assume that the edges of the combined panel are held at zero

temperature. Then the temperature distribution shows a two-dimensional distribution in r � h plane, and

the transient heat conduction equation for the ith layer and the initial and thermal boundary conditions in
dimensionless form are taken in the following forms:
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In expressions (1)–(9), we have introduced the following dimensionless values:

ðT i; T bÞ ¼
ðTi; TbÞ
T0

; ðq;Ri; �aa;�ccÞ ¼
ðr; ri; a; cÞ

b
; ð�jjri; �jjhi; �jjLi ; �jjTiÞ ¼

ðjri; jhi;jLi ; jTiÞ
j0

;

ð�kkri; �kkTiÞ ¼
ðkri; kTiÞ

k0

; s ¼ j0t
b2

; ðHb;HcÞ ¼ ðhb; hcÞb ð10Þ

where Ti is the temperature change of the ith layer; jri and jhi are thermal diffusivities in the r and h di-

rections, respectively; kri is thermal conductivity in the r direction; t is time; and T0, j0, and k0 are typical

values of temperature, thermal diffusivity and thermal conductivity, respectively. In Eq. (8), the subscripts L

and T denote the fiber and transverse directions, respectively. Moreover, ri (i ¼ 1; 2; . . . ;N ) are the coor-

dinates of interface of the laminated cylindrical panel.
Introducing the finite sine transformation with respect to the variable h and Laplace transformation with

respect to the variable s, the solution of Eq. (1) can be obtained so as to satisfy the conditions (2)–(7). This

solution is shown as follows:

T i ¼
X1
k¼1

T ikðq; sÞ sin qkh; i ¼ 1–ðN þ 1Þ ð11Þ

where

T ikðq; sÞ ¼
2

h0

1

F
ðA0

iq
ci

"
þ B0

iq
�ciÞ þ

X1
j¼1

2 expð�l2
j sÞ

ljD
0ðljÞ

fAiJciðbiljqÞ þ BiYciðbiljqÞg
#

ð12Þ

where Jcð Þ and Ycð Þ are the Bessel function of the first and second kind of order c, respectively; D and F are
the determinants of 2ðN þ 1Þ 
 2ðN þ 1Þ matrix ½akl� and ½ekl�, respectively; the coefficients Ai and Bi are
defined as the determinants of the matrix similar to the coefficient matrix ½akl�, in which the (2i� 1)th
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column or 2ith column is replaced by the constant vector fckg, respectively; similarly, the coefficients A
0
i and

B
0
i are defined as the determinants of the matrix similar to the coefficient matrix ½ekl�, in which the (2i� 1)th

column or 2ith column is replaced by the constant vector fckg, respectively. Furthermore, the non-zero

elements akl and ck of the coefficient matrix ½akl� and the constant vector fckg are given as follows:

a11 ¼ b1lJc1þ1ðb1l�ccÞ þ Hc

�
� c1

�cc

�
Jc1ðb1l�ccÞ;

a12 ¼ b1lYc1þ1ðb1l�ccÞ þ Hc

�
� c1

�cc

�
Yc1ðb1l�ccÞ;

a2Nþ2;2Nþ1 ¼ ðHb þ cNþ1ÞJcNþ1
ðbNþ1lÞ � bNþ1lJcNþ1þ1ðbNþ1lÞ;

a2Nþ2;2Nþ2 ¼ ðHb þ cNþ1ÞYcNþ1
ðbNþ1lÞ � bNþ1lYcNþ1þ1ðbNþ1lÞ;

a2i;2i�1 ¼ JciðbilRiÞ; a2i;2i ¼ YciðbilRiÞ;

a2i;2iþ1 ¼ �Jciþ1
ðbiþ1lRiÞ; a2i;2iþ2 ¼ �Yciþ1

ðbiþ1lRiÞ;

a2iþ1;2i�1 ¼ �kkri
ci
Ri
JciðbilRiÞ

�
� bilJciþ1ðbilRiÞ

�
;

a2iþ1;2i ¼ �kkri
ci
Ri
YciðbilRiÞ

�
� bilYciþ1ðbilRiÞ

�
;

a2iþ1;2iþ1 ¼ ��kkr;iþ1

ciþ1

Ri
Jciþ1

ðbiþ1lRiÞ
�

� biþ1lJciþ1þ1ðbiþ1lRiÞ
�
;

a2iþ1;2iþ2 ¼ ��kkr;iþ1

ciþ1

Ri
Yciþ1

ðbiþ1lRiÞ
�

� biþ1lYciþ1þ1ðbiþ1lRiÞ
�
; i ¼ 1–N

ð13Þ

c2Nþ2 ¼ HbT bf̂fbðqÞ ð14Þ

On the other hand, the element ekl of the coefficient matrix ½ekl� is omitted here for the sake of brevity. In
Eq. (13), q represents the parameter of finite sine transformation with respect to the variable h and a symbol

(̂ ) represents the image function. In Eqs. (11) and (12), D0ðljÞ, qk, bi and ci are

D0ðljÞ ¼
dD
dl

����
l¼lj

; qk ¼
kp
h0

; bi ¼
1ffiffiffiffiffi
�jjri

p ; ci ¼
ffiffiffiffiffiffi
�jjhi

�jjri

r
qk ð15Þ

and lj represent the jth positive roots of the following transcendental equation

DðlÞ ¼ 0 ð16Þ

2.2. Piezothermoelastic problem

We develop the analysis for transient piezothermoelasticity of a simply supported cylindrical composite

panel composed of angle-ply laminae and piezoelectric material as a generalized plane deformation

problem.
In the case of the piezoelectric layer of crystal class mm2, the stress–strain relations are expressed in

dimensionless form as follows:

5740 Y. Ootao, Y. Tanigawa / International Journal of Solids and Structures 39 (2002) 5737–5752



�rrrri
�rrhhi

�rrzzi
�rrhzi

�rrrzi
�rrrhi

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

¼

C11i C12i C13i 0 0 0

C12i C22i C23i 0 0 0

C13i C23i C33i 0 0 0

0 0 0 C44i 0 0

0 0 0 0 C55i 0

0 0 0 0 0 C66i

2
66666664

3
77777775

�eerri
�eehhi

�eezzi
�cchzi

�ccrzi
�ccrhi

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

�

�bbriT i
�bbhiT i
�bbziT i
0

0

0

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

�

�ee1 0 0

�ee2 0 0

�ee3 0 0

0 0 0

0 0 �ee5
0 �ee6 0

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

Er
Eh

Ez

8<
:

9=
;; i¼ 1 ð17Þ

where

�bbri ¼ C11i�aari þ C12i�aahi þ C13i�aazi; �bbhi ¼ C12i�aari þ C22i�aahi þ C23i�aazi;
�bbzi ¼ C13i�aari þ C23i�aahi þ C33i�aazi; i ¼ 1 ð18Þ

In the case of the angle-ply laminate (i ¼ 2–ðN þ 1Þ), the stress–strain relations for the global coordinate

system (r; h; z) are expressed in dimensionless form as follows:
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where
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11i�aazi þ Q

�
12i�aahi þ Q

�
13i�aari þ Q

�
16i�aahzi; �bbhi ¼ Q

�
12i�aazi þ Q
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22i�aahi þ Q
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23i�aari þ Q

�
26i�aahzi;

�bbri ¼ Q
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ð20Þ

The constitutive equations for the electric field in dimensionless form are given as

Dr ¼ �ee1�eerr1 þ �ee2�eehh1 þ �ee3�eezz1 þ �gg1Er þ �pp1T 1; Dh ¼ �ee6�ccrh1 þ �gg2Eh; Dz ¼ �ee5�ccrz1 þ �gg3Ez ð21Þ
We assume the displacement components for the global coordinate system as the state of a generalized

plane deformation in the following forms:

�uuri ¼ �uuriðq; hÞ; �uuhi ¼ �uuhiðq; hÞ; �uuzi ¼ �uuziðq; hÞ ð22Þ
The relations between the electric field intensities and the electric potential / in dimensionless form are
defined by

Er ¼ � �//;q; Eh ¼ �q�1 �//;h; Ez ¼ � �//;�zz ¼ 0 ð23Þ

where a comma denotes partial differentiation with respect to the variable that follows. If the free charge is

absent, the equation of electrostatics is expressed in dimensionless form as follows:

Dr;q þ q�1ðDr þ Dh;hÞ ¼ 0 ð24Þ
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The displacement–strain relations for the ith layer are expressed in dimensionless form as follows:

�eerri ¼ �uuri;q; �eehhi ¼ q�1ð�uuhi;h þ �uuriÞ; �eezzi ¼ 0; �cchzi ¼ q�1�uuzi;h; �ccrzi ¼ �uuzi;q;

�ccrhi ¼ q�1ð�uuri;h � �uuhiÞ þ �uuhi;q; i ¼ 1–ðN þ 1Þ ð25Þ

The equilibrium equations for the ith layer are expressed in dimensionless form as follows:

�rrrri;q þ q�1�rrrhi;h þ q�1ð�rrrri � �rrhhiÞ ¼ 0; �rrrhi;q þ q�1�rrhhi;h þ 2q�1�rrrhi ¼ 0;

�rrrzi;q þ q�1ð�rrhzi;h þ �rrrziÞ ¼ 0; i ¼ 1–ðN þ 1Þ ð26Þ

In expressions (17)–(26), the following dimensionless values have been introduced:

�rrkli ¼
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a0Y0T0
; ð�eekli; �cckliÞ ¼

ðekli; ckliÞ
a0T0

; ð�uuri; �uuhi; �uuziÞ ¼
ðuri; uhi; uziÞ

a0T0b
; ð�aaki; �aahziÞ ¼

ðaki; ahziÞ
a0

;

ðCkli;Q
�
kliÞ ¼

ðCkli;Q�
kliÞ

Y0
; Ek ¼

Ekjd1j
a0T0

; Dk ¼
Dk

a0Y0T0jd1j
; �// ¼ /jd1j

a0T0b
; �eek ¼

ek
Y0jd1j

;

�ggk ¼
gk

Y0jd1j2
; �pp1 ¼

p1
a0Y0jd1j

ð27Þ

where rkli are the stress components, ekli are the normal strain components, ckli are the shearing strain,

ðuri; uhi; uziÞ are the displacement components, aki and ahzi are the coefficients of linear thermal expansion,

Ckli are the elastic stiffness constants, Q�
kli are the transformed elastic stiffness constants, Dk are the electric

displacement components, ek are the piezoelectric coefficients, gk are the dielectric constants, p1 is the

pyroelectric constant, d1 is the piezoelectric modulus and a0 and Y0 are the typical values of the coefficient of
linear thermal expansion and Young�s modulus of elasticity, respectively.

In the case of the piezoelectric layer, substituting Eqs. (23) and (25) into Eqs. (17) and (21), and later into

Eqs. (24) and (26), the governing equations of the displacement components and the electric potential in

dimensionless form are written as

C11ið�uuri;qq þ q�1�uuri;qÞ � q�2ðC22i�uuri � C66i�uuri;hhÞ þ ðC12i þ C66iÞq�1�uuhi;qh � ðC22i þ C66iÞq�2�uuhi;h

þ �ee1 �//;qq þ �ee6q�2 �//;hh þ ð�ee1 � �ee2Þq�1 �//;q ¼ �bbriT i;q þ q�1ð�bbri � �bbhiÞT i; i ¼ 1 ð28Þ

ðC66i þ C12iÞq�1�uuri;qh þ ðC66i þ C22iÞq�2�uuri;h þ C66iðq�1�uuhi;q � q�2�uuhi þ �uuhi;qqÞ þ C22iq
�2�uuhi;hh

þ q�2�ee6 �//;h þ ð�ee6 þ �ee2Þq�1 �//;qh ¼ q�1 �bbhiT i;h; i ¼ 1 ð29Þ

C55ið�uuzi;qq þ q�1�uuzi;qÞ þ C44iq
�2�uuzi;hh ¼ 0; i ¼ 1 ð30Þ

�ee1�uuri;qq þ ð�ee1 þ �ee2Þq�1�uuri;q þ �ee6q�2�uuri;hh þ ð�ee2 þ �ee6Þq�1�uuhi;qh � �ee6q�2�uuhi;h � �gg1ð �//;qq þ�qq�1 �//;q Þ

� �gg2�qq
�2 �//;hh ¼ ��pp1ðT i;q þ q�1T iÞ; i ¼ 1 ð31Þ

In the case of the angle-ply laminate ði ¼ 2–ðN þ 1ÞÞ, substituting Eq. (25) into Eq. (19), and later into
Eq. (26), the governing equations of the displacement components in dimensionless form are written as

Q
�
33ið�uuri;qq þ q�1�uuri;qÞ � q�2ðQ�

22i�uuri � Q
�
44i�uuri;hhÞ þ ðQ�

23i þ Q
�
44iÞq�1�uuhi;qh � ðQ�

22i þ Q
�
44iÞq�2�uuhi;h

þ ðQ�
36i þ Q

�
45iÞq�1�uuzi;qh � Q

�
26iq

�2�uuzi;h ¼ �bbriT i;q þ ð�bbri � �bbhiÞq�1T i; i ¼ 2–ðN þ 1Þ ð32Þ

ðQ�
44i þ Q

�
23iÞq�1�uuri;qh þ ðQ�

44i þ Q
�
22iÞq�2�uuri;h þ Q

�
44iðq�1�uuhi;q � q�2�uuhi þ �uuhi;qqÞ þ Q

�
22iq

�2�uuhi;hh

þ Q�
45ið�uuzi;qq þ 2q�1�uuzi;qÞ þ Q

�
26iq

�2�uuzi;hh ¼ q�1 �bbhiT i;h; i ¼ 2–ðN þ 1Þ ð33Þ
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ðQ�
36i þ Q

�
45iÞq�1�uuri;qh þ Q

�
26iq

�2�uuri;h þ Q
�
45i�uuhi;qq þ Q

�
26iq

�2�uuhi;hh þ Q
�
55ið�uuzi;qq þ q�1�uuzi;qÞ

þ Q�
66iq

�2�uuzi;hh ¼ �bbhziq
�1T i;h; i ¼ 2–ðN þ 1Þ ð34Þ

If the inner and outer surfaces of the combined panel are traction free, and the interfaces of the each

layer are perfectly bonded, then the boundary conditions of inner and outer surfaces and the conditions of

continuity at the interfaces can be represented as follows:

q ¼ �cc; �rrrr1 ¼ 0; �rrrh1 ¼ 0; �rrrz1 ¼ 0

q ¼ 1; �rrrr;Nþ1 ¼ 0; �rrrh;Nþ1 ¼ 0; �rrrz;Nþ1 ¼ 0

q ¼ Ri; �rrrri ¼ �rrrr;iþ1; �rrrhi ¼ �rrrh;iþ1; �rrrzi ¼ �rrrz;iþ1;

�uuri ¼ �uur;iþ1; �uuhi ¼ �uuh;iþ1; �uuzi ¼ �uuz;iþ1; i ¼ 1–N

ð35Þ

The boundary conditions in the radial direction for the electric field are expresses by

q ¼ �cc; Dr ¼ 0; q ¼ �aa; �// ¼ 0 ð36Þ
We now consider the case of a simply supported panel and assume that the edges of the piezoelectric layer

are electrically grounded. The boundary conditions are given as follows:

h ¼ 0; h0; �rrhhi ¼ 0; �rrhzi ¼ 0; �uuri ¼ 0; �// ¼ 0 ð37Þ
We assume the solutions of the displacement components and electric potential in order to satisfy Eq. (37)

in the following form:

�uuri ¼
X1
k¼1

fUrcikðqÞ þ UrpikðqÞg sin qkh;

�uuhi ¼
X1
k¼1

fUhcikðqÞ þ UhpikðqÞg cos qkh;

�uuzi ¼
X1
k¼1

fUzcikðqÞ þ UzpikðqÞg cos qkh; i ¼ 1–ðN þ 1Þ;

�// ¼
X1
k¼1

fUckðqÞ þ UpkðqÞg sin qkh

ð38Þ

In expression (38), the first term on the right side gives the homogeneous solution and the second term of
right side gives the particular solution. However, since Eq. (30) has not the term of the temperature, the

particular solution UzpikðqÞ of the piezoelectric layer does not exist. We now consider the homogeneous

solution and introduce the following equation:

q ¼ expðsÞ ð39Þ

Substituting the first term on the right side of Eq. (38) into the homogeneous expression of Eqs. (28)–(31),

and later changing a variable with the use of Eq. (38), we have for the piezoelectric layer

½C11iD
2 � ðC22i þ C66iq2kÞ�Urcik � ½ðC12i þ C66iÞD� ðC22i þ C66iÞ�qkUhcik

þ ð�ee1D
2 � �ee2D� �ee6q2kÞUck ¼ 0; i ¼ 1 ð40Þ

½ðC12i þ C66iÞDþ C22i þ C66i�qkUrcik þ ½C66iD
2 � ðC66i þ C22iq2kÞ�Uhcik

þ ½ð�ee6 þ �ee2ÞDþ �ee6�qkUck ¼ 0; i ¼ 1 ð41Þ
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ðC55iD
2 � C44iq2kÞUzcik ¼ 0; i ¼ 1 ð42Þ

ð�ee1D
2 þ �ee2D� �ee6q2kÞUrcik � ½ð�ee2 þ �ee6ÞD� �ee6�qkUhcik � ð�gg1D

2 � �gg2q
2
kÞUck ¼ 0; i ¼ 1 ð43Þ

where

D ¼ d

ds
ð44Þ

We show Urcik , Uhcik, Uzcik and Uck as follows:

ðUrcik;Uhcik;Uzcik;UckÞ ¼ ðU 0
rcik;U

0
hcik;U

0
zcik ;U

0
ckÞ expðkisÞ; i ¼ 1 ð45Þ

Substituting Eq. (45) into Eqs. (40), (41) and (43), the condition that a non-trivial solution of

ðU 0
rcik;U

0
hcik;U

0
ckÞ exists leads to the following equation:

p3i þ dðiÞpi þ f ðiÞ ¼ 0 ð46Þ

where

pi ¼ k2
i �

BðiÞ

3AðiÞ ; dðiÞ ¼ � 3AðiÞCðiÞ þ ðBðiÞÞ2

3ðAðiÞÞ2

" #
;

f ðiÞ ¼ � 2ðBðiÞÞ3 þ 9AðiÞBðiÞCðiÞ þ 27DðiÞðAðiÞÞ2

27ðAðiÞÞ3

" #
ð47Þ

AðiÞ ¼ C66ið�ee21 þ �gg1C11iÞ;

BðiÞ ¼ q2k ½�gg1ðC11iC22i � C
2

12i � 2C12iC66iÞ þ �gg2C11iC66i

þ C11ið�ee2 þ �ee6Þ2 � 2�ee1�ee2ðC12i þ C66iÞ � 2C12i�ee1�ee6 þ �ee21C22i�

þ C66i½ðC11i þ C22iÞ�gg1 þ �ee21 þ �ee22�;

CðiÞ ¼ �C66iðC22i�gg1 þ �ee22Þðq2k � 1Þ2 þ 2q2kðq2k � 1Þ�ee6ðC12i�ee2 � C22i�ee1Þ

� q2kðC11i þ C22iÞð�ee26 þ �gg2C66iÞ þ q4k ½�gg2ðC
2

12i þ 2C12iC66i � C11iC22iÞ þ 2C12i�ee26�;

DðiÞ ¼ C22iq2kð�ee26 þ �gg2C66iÞðq2k � 1Þ2

ð48Þ

We now introduce the following expression:

Hi ¼
ðf ðiÞÞ2

4
þ ðdðiÞÞ3

27
ð49Þ

From Eq. (46), there might be three distinct real roots, three real roots with at least two of them being

equal or a real root in conjunction with one pair of conjugate complex roots depending Hi is negative,
zero or positive, respectively. For instance, UrcikðqÞ, UhcikðqÞ and UckðqÞ can be expressed as follows when

Hi < 0:

UrcikðqÞ ¼
X3

J¼1

UJ
rcikðqÞ; UhcikðqÞ ¼

X3

J¼1

UJ
hcikðqÞ; UckðqÞ ¼

X3

J¼1

UJ
ckðqÞ ð50Þ
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where

UJ
rcikðqÞ ¼ F ðiÞ

rJ qmJi þ SðiÞrJ q�mJi ;

UJ
hcikðqÞ ¼ LkiJ ðmJiÞF ðiÞ

rJ qmJi þ LkiJ ð�mJiÞSðiÞrJ q�mJi ;

UJ
ckðqÞ ¼ RkiJ ðmJiÞF ðiÞ

rJ qmJi þ RkiJ ð�mJiÞSðiÞrJ q�mJi ;

mJi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
piJ þ

BðiÞ

3AðiÞ

r
if piJ þ

BðiÞ

3AðiÞ > 0

ð51Þ

UJ
rcikðqÞ ¼ F ðiÞ

rJ cosðmJi ln qÞ þ SðiÞrJ sinðmJi ln qÞ;
UJ

hcikðqÞ ¼ fRe½LkiJ ðjmJiÞ� cosðmJi ln qÞ � Im½LkiJ ðjmJiÞ� sinðmJi ln qÞgF ðiÞ
rJ

þ fIm½LkiJ ðjmJiÞ� cosðmJi ln qÞ þRe½LkiJ ðjmJiÞ� sinðmJi ln qÞgSðiÞrJ ;
UJ
ckðqÞ ¼ fRe½RkiJ ðjmJiÞ� cosðmJi ln qÞ � Im½RkiJ ðjmJiÞ� sinðmJi ln qÞgF ðiÞ

rJ

þ fIm½RkiJ ðjmJiÞ� cosðmJi ln qÞ þRe½RkiJ ðjmJiÞ� sinðmJi ln qÞgSðiÞrJ ;

mJi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� piJ þ

BðiÞ

3AðiÞ

� �s
if piJ þ

BðiÞ

3AðiÞ < 0

ð52Þ

In Eqs. (51) and (52),

LkiJ ðxÞ ¼
qk

IkiJ ðxÞ
fx3½�ee1ðC12i þ C66iÞ � C11ið�ee2 þ �ee6Þ�

þ x2½�ee1ðC22i þ C66iÞ � �ee2ðC12i þ C66iÞ � C11i�ee6�
þ x½ð�ee6C22i � �ee2C66iÞ þ q2kð�ee2C66i � �ee6C12iÞ� þ C22i�ee6ð1� q2kÞg;

RkiJ ðxÞ ¼
1

IkiJ ðxÞ
½C11iC66ix4 þ x2f½ðC12i þ C66iÞ2

� C11iC22i � C
2

66i�q2k � C66iðC11i þ C22iÞg þ C22iC66ið1� q2kÞ
2�;

IkiJ ðxÞ ¼ �C66i�ee1x4 þ C66i�ee2x3 þ x2fq2k ½C22i�ee1 þ C66i�ee6 � ðC12i þ C66iÞð�ee2 þ �ee6Þ� þ C66i�ee1g
þ xfq2k ½�ee6ðC22i � C12iÞ þ �ee2C66i� � �ee2C66ig þ C22i�ee6q2kð1� q2kÞ

ð53Þ

In Eq. (52), j, Re[ ] and Im[ ] are imaginary unit j ¼
ffiffiffiffiffiffiffi
�1

p
, real part and imaginary part, respectively.

Furthermore, in Eqs. (51) and (52), F ðiÞ
rJ and SðiÞrJ are unknown constants. The case of Hi ¼ 0 or Hi > 0 is

omitted here for the sake of brevity.

Substituting Eq. (45) into Eq. (42), the condition that non-trivial solutions of U 0
zcik exist leads to the

following equation:

ki ¼ �m4i; i ¼ 1 ð54Þ
where

m4i ¼ �

ffiffiffiffiffiffiffiffi
C44i

C55i

s
qk ; i ¼ 1 ð55Þ

Then Uzc1kðqÞ can be expressed as follows:

Uzc1kðqÞ ¼ Fzqm41 þ Szq�m41 ð56Þ
In Eq. (56), Fz and Sz are unknown constants.

In the case of angle-ply laminate, UrcikðqÞ, UhcikðqÞ and UzcikðqÞ are obtained in the same way as the case

of the piezoelectric layer. Assuming that
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ðUrcik;Uhcik;UzcikÞ ¼ ðU 0
rcik ;U

0
hcik;U

0
zcikÞ expðkisÞ; i ¼ 2–ðN þ 1Þ ð57Þ

we get the same equation of Eqs. (46) and (47). In this case, Eq. (48) exchanges to the next equation.

AðiÞ ¼ Q
�
33i½Q

�
55iQ

�
44i � ðQ�

45iÞ
2�;

BðiÞ ¼ q2kQ
�
55i½Q

�
33iQ

�
22i � ðQ�

23iÞ
2� þ q2kQ

�
44i½Q

�
33iQ

�
66i � ðQ�

36iÞ
2�

þ ðQ�
33i þ Q

�
22i � 2q2kQ

�
23iÞ½Q

�
55iQ

�
44i � ðQ�

45iÞ
2� � 2q2kQ

�
45iðQ

�
33iQ

�
26i � Q

�
23iQ

�
36iÞ;

CðiÞ ¼ ½q4kQ
�
36i þ 2q2kðq2k � 1ÞQ�

45i�ðQ
�
22iQ

�
36i � Q

�
23iQ

�
26iÞ � q4kQ

�
33i½Q

�
22iQ

�
66i � ðQ�

26iÞ
2�

þ q4kðQ
�
23i þ 2Q

�
44iÞðQ

�
23iQ

�
66i � Q

�
36iQ

�
26iÞ � Q

�
22iðq2k � 1Þ2½Q�

55iQ
�
44i � ðQ�

45iÞ
2�

þ q2kQ
�
44i½ðQ

�
36iÞ

2 þ ðQ�
26iÞ

2 � Q�
33iQ

�
66i � Q

�
22iQ

�
66i�;

DðiÞ ¼ q2kðq2k � 1Þ2Q�
44i½Q

�
22iQ

�
66i � ðQ�

26iÞ
2�

ð58Þ

Therefore ðUrcik;Uhcik;UzcikÞ of angle-ply laminate are obtained as the function systems like ðUrcik;Uhcik;UckÞ
of the piezoelectric layer (i ¼ 1). ðUrcik;Uhcik;UzcikÞ of angle-ply laminate had been obtained in the previous

paper (Ootao and Tanigawa, 2002), and their details are omitted here.

Next, in order to obtain the particular solution, we use the series expansions of the Bessel function as

follows:

JcðxÞ ¼
X1
n¼0

ð�1Þnðx=2Þ2nþc

n!Cðc þ nþ 1Þ ð59Þ

YcðxÞ ¼
1

sin cp
½cos cpJcðxÞ � J�cðxÞ� if c 6¼ integer ð60Þ

Since the order ci of the Bessel function in Eq. (12) is not integer in general except ply angle /i ¼ 0�, Eq.

(12) can be written as the following expression using Eqs. (59) and (60).

T ikðq; sÞ ¼
X1
n¼0

faniðsÞq2nþci þ bniðsÞq2n�cig ð61Þ

Expressions for the functions aniðsÞ and bniðsÞ in Eq. (61) are omitted here for the sake of brevity. We

assume UrpikðqÞ, UhpikðqÞ, UzpikðqÞ and UpkðqÞ as follows:

UrpikðqÞ ¼
X1
n¼0

faniq2nþciþ1
�

þ fbniq2n�ciþ1
�
; i ¼ 1–ðN þ 1Þ;

UhpikðqÞ ¼
X1
n¼0

ganiq2nþciþ1
�

þ gbniq2n�ciþ1
�
; i ¼ 1–ðN þ 1Þ;

UzpikðqÞ ¼
X1
n¼0

haniq2nþciþ1
�

þ hbniq2n�ciþ1
�
; i ¼ 2–ðN þ 1Þ;

UpkðqÞ ¼
X1
n¼0

ianiq2nþciþ1
�

þ ibniq2n�ciþ1
�
; i ¼ 1

ð62Þ

Substituting Eqs. (11), (61), (62) and the second term of right side of Eq. (38) into Eqs. (28), (29), (31) or

Eqs. (32)–(34), and later comparing the coefficients of functions with regard to q respectively, the constants

fani, fbni, gani, gbni, hani, hbni, iani and ibni can be obtained.
Then, in the case of angle-ply laminate, the stress components can be evaluated by substituting the first

three of Eq. (38) into the Eq. (25), and later Eq. (19). In the case of the piezoelectric layer, the stress
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components and the electric displacements can be evaluated by substituting Eq. (38) into the Eqs. (23) and

(25), and later into Eqs. (17) and (21). The unknown constants in the homogeneous solutions such as Eqs.

(51), (52) and (56) are determined so as to satisfy the boundary conditions (35) and (36).

3. Numerical results

We consider the piezoelectric layer composed of a cadmium selenide solid and the angle-ply laminate

composed of alumina fiber reinforced aluminum composite. We assume that each layer of angle-ply lam-
inated panel consists of the same orthotropic material, and consider a two-layered anti-symmetric angle-ply

laminated panel with the fiber-orientation (60�/)60�) and the same thickness. We assume that the combined

cylindrical panel is heated by surrounding media, the temperature of which is denoted by the symmetric

function with respect to the center of the panel ðh ¼ h0=2Þ. Then, numerical calculative parameters of heat

condition and shape are presented as follows:

Hb ¼ Hc ¼ 1:0; T b ¼ 1; h0 ¼ 90�; �aa ¼ 0:7; 0:85; 0:95; �aa� �cc ¼ 0:05;

fbðhÞ ¼ ð1� h02=h2
bÞHðhb � jh0jÞ; hb ¼ 15�; h0 ¼ h � h0=2 ð63Þ

where HðxÞ is Heaviside�s function. The material constants (Ootao and Tanigawa, 2000a) are taken as for

alumina fiber reinforced aluminum composite,

jL ¼ 41:1
 10�6 m2=s; jT ¼ 29:5
 10�6 m2=s; aL ¼ 7:6
 10�6 K�1;

aT ¼ 14:0
 10�6 K�1; kL ¼ 105 W=mK; kT ¼ 75 W=mK; YL ¼ 150 GPa;

YT ¼ 110 GPa;GLT ¼ 35GPa; GTT ¼ 41 GPa; mLT ¼ 0:33; mTT ¼ 0:33; mTL ¼ 0:242 ð64Þ

and for cadmium selenide,

Fig. 1. Temperature change distribution in a (a) transient state (s ¼ 0:005) and (b) steady state (s ¼ 1).
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ah ¼ az ¼ 4:396
 10�6 K�1; ar ¼ 2:458
 10�6 K�1; C11 ¼ 83:6 GPa; C22 ¼ C33 ¼ 74:1 GPa;

C23 ¼ 45:2 GPa; C12 ¼ C13 ¼ 39:3 GPa; C66 ¼ 13:17 GPa; e1 ¼ 0:347 C=m2;

e2 ¼ e3 ¼ �0:16 C=m2; e6 ¼ �0:138 C=m2; g1 ¼ 9:03
 10�11 C2=Nm2;

g2 ¼ 8:25
 10�11 C2=Nm2 p1 ¼ �2:94
 10�6 C=m2K;

d1 ¼ �3:92
 10�12 C=N kh ¼ 8:6 W=mK; kr ¼ 1:5kh ð65Þ

where G and m are the shear modulus of elasticity and Poisson�s ratio, respectively. Since the coefficients of

thermal conductivity for cadmium selenide could not be found in the literature, the following values are

assumed:

Fig. 2. Variation of the thermal stress �rrhh in the radial direction ðh ¼ h0=2Þ.

Fig. 3. Thermal stress �rrrh: (a) distribution in a steady state ðs ¼ 1Þ and (b) variation on the interface (q ¼ 0:7).
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jh ¼ 3:28
 10�6 m2=s; jr ¼ 1:5jh ð66Þ

The typical values of material properties such as j0, k0, a0 and Y0, used to normalize the numerical data, are

based on those of cadmium selenide as follows:

j0 ¼ jh; k0 ¼ kh; a0 ¼ ah; Y0 ¼ 42:8 GPa ð67Þ

Figs. 1–5 show the numerical results for �aa ¼ 0:7. Fig. 1 shows the results of temperature change. The

distribution in a transient state ðs ¼ 0:005Þ is shown in Fig. 1(a) and the distribution in a steady state is
shown in Fig. 1(b). As shown in Fig. 1, the temperature rise can clearly be seen in the heated region. Fig. 2

shows the variation of the normal stress �rrhh at the midpoint of the panel. From Fig. 2, discontinuities of

stress occur on the interfaces. In order to valuate the phenomenon of delamination, it is necessary to focus

Fig. 4. Variation of the thermal stress �rrrr on the interface (q ¼ 0:7).

Fig. 5. Variation of the thermal stress �rrrz on the interface (q ¼ 0:85).
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attention on transeverse stresses. Then, Figs. 3–5 show the variations of the shearing stress �rrrh, the normal

stress �rrrr and the shearing stress �rrrz, respectively. The distributions in a steady state are shown in Fig. 3(a),

and the variation on the interface (q ¼ 0:7) is shown in Fig. 3(b). Since the shearing stress �rrrh is anti-

symmetric with respect to h ¼ 45� under the condition of Eq. (63), Fig. 3(a) shows a range of 0–45�. From
Fig. 3(a), it can be seen that the stress of �rrrh shows the maximum value on the interface between the

piezoelectric layer and the angle-ply laminae (q ¼ 0:7). Fig. 4 shows the variation on the interface (q ¼ 0:7),
because the tensile stress of �rrrr shows the maximum value on the interface (q ¼ 0:7). Fig. 5 shows the

variation on the interface (q ¼ 0:85), because the stress of �rrrz shows the maximum value on the interface

between the second layer and the third layer (q ¼ 0:85). As shown in Figs. 3(b), 4 and 5, it can be seen that

Table 1

Effect of thickness of angle-ply laminate for s ¼ 0:01

s ¼ 0:01 �aa ¼ 0:7, �cc ¼ 0:65 �aa ¼ 0:85, �cc ¼ 0:8 �aa ¼ 0:95, �cc ¼ 0:9

T ðq ¼ 1; h ¼ 45�Þ 0.1802 0.2202 0.3495

T ðq ¼ �cc; h ¼ 45�Þ 0.06127 0.1414 0.2994

�uurðq ¼ 1; h ¼ 45�Þ 0.1589 0.2788 1.544

�uurðq ¼ �cc; h ¼ 45�Þ 0.02838 0.1653 1.464

�uuhðq ¼ 1; h ¼ 0�Þ )0.09606 )0.09781 0.3839

�uuhðq ¼ �cc; h ¼ 0�Þ )0.02733 )0.009072 0.6065

�uuzðq ¼ 1; h ¼ 0�Þ )0.01007 )0.007609 )0.007982
�uuzðq ¼ �cc; h ¼ 0�Þ )0.005683 )0.006373 )0.007861
�rrrrðq ¼ �aa; h ¼ 45�Þ 0.004502 0.006424 0.005593

�rrhhðq ¼ 1; h ¼ 45�Þ 0.01184 0.1469 0.4567

�rrhhðq ¼ �aaþ; h ¼ 45�Þ )0.1215 )0.3181 )0.7617
�rrhhðq ¼ �cc; h ¼ 45�Þ 0.08357 0.1430 )0.09534
�rrzzðq ¼ 1; h ¼ 45�Þ )1.193 )1.412 )2.162
�rrzzðq ¼ �cc; h ¼ 45�Þ )0.01864 )0.06751 )0.3383
�rrrhðq ¼ �aa; h ¼ 30�Þ )0.09362 )0.01898 )0.01794
�rrrzðq ¼ �aaþ ð1� �aaÞ=2; h ¼ 30�Þ )0.04709 )0.04594 )0.03346
�// 
 103ðq ¼ �cc; h ¼ 45�Þ 0.1278 0.2765 0.4729

Table 2

Effect of thickness of angle-ply laminate for s ¼ 1
s ¼ 1 �aa ¼ 0:7, �cc ¼ 0:65 �aa ¼ 0:85, �cc ¼ 0:8 �aa ¼ 0:95, �cc ¼ 0:9

T ðq ¼ 1; h ¼ 45�Þ 0.2294 0.2946 0.4285

T ðq ¼ �cc; h ¼ 45�Þ 0.1198 0.2257 0.3867

�uurðq ¼ 1; h ¼ 45�Þ 0.1454 0.3171 1.964

�uurðq ¼ �cc; h ¼ 45�Þ )0.05199 0.1534 1.865

�uuhðq ¼ 1; h ¼ 0�Þ )0.1877 )0.2050 0.4640

�uuhðq ¼ �cc; h ¼ 0�Þ )0.1247 )0.09157 0.7592

�uuzðq ¼ 1; h ¼ 0�Þ )0.01285 )0.01028 )0.01053
�uuzðq ¼ �cc; h ¼ 0�Þ )0.003950 )0.007483 )0.01024
�rrrrðq ¼ �aa; h ¼ 45�Þ 0.01105 0.01148 0.007281

�rrhhðq ¼ 1; h ¼ 45�Þ 0.08559 0.2527 0.5731

�rrhhðq ¼ �aaþ; h ¼ 45�Þ )0.1738 )0.4747 )0.9470
�rrhhðq ¼ �cc; h ¼ 45�Þ 0.2058 0.2388 )0.1144
�rrzzðq ¼ 1; h ¼ 45�Þ )1.494 )1.869 )2.646
�rrzzðq ¼ �cc; h ¼ 45�Þ )0.01563 )0.1026 )0.4328
�rrrhðq ¼ �aa; h ¼ 30�Þ )0.01686 )0.02476 )0.02005
�rrrzðq ¼ �aaþ ð1� �aaÞ=2; h ¼ 30�Þ )0.06099 )0.05578 )0.03721
�// 
 103ðq ¼ �cc; h ¼ 45�Þ 0.2583 0.4360 0.6032
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the values of shearing stresses �rrrh and �rrrz and normal stress �rrrr rise as the time proceeds and have maximum

value in the steady state. Figs. 3(b), 4 and 5 show that the values of shearing stress �rrrz are larger than those

of normal stress �rrrr and shearing stress �rrrh.
In order to examine the influence of thickness of angle-ply laminate, the numerical results for �aa ¼ 0:7,

0.85, 0.95 are shown in Tables 1 and 2 and Figs. 6 and 7. Tables 1 and 2 show the typical values of

temperature change, displacement, stress, and electric potential for a transient state (s ¼ 0:01) and ones for

the steady state, respectively. In Tables 1 and 2, �rrhh at q ¼ �aaþ shows the value of the second layer. From

Tables 1 and 2, the values of temperature change increase when the radial ratio �aa increases, that is, when the

thickness of angle-ply laminate decreases. Fig. 6 shows the variations of thermal displacement. The vari-

ation of the thermal displacement �uuh on the cross-section h ¼ 0� is shown in Fig. 6(a) and the variation of

Fig. 6. Variation of the thermal displacement (a) �uuh in the radial direction ðh ¼ 0�Þ and (b) �uur in the radial direction (h ¼ h0=2).

Fig. 7. Variation of the electric potential in the radial direction (h ¼ h0=2).
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the thermal displacement �uur at the midpoint of the panel ðh ¼ h0=2Þ is shown in Fig. 6(b). As shown in

Fig. 6, it can be seen that the values for �aa ¼ 0:95 are considerably larger than ones for �aa ¼ 0:7 and �aa ¼ 0:85.
And the variations with time vary depending on the radial ratio �aa. Fig. 7 shows the variation of the

electric potential at the midpoint of the panel. From Fig. 7, the values of electric potential increase when the
radial ratio �aa increases.

The numerical results were obtained under the condition that the upper limits of series with respect to k

and n are taken as k ¼ 16 and n ¼ 130, and the maximum of eigenvalue lj is 100.

4. Conclusions

In the present article, we obtained the exact solution for the transient temperature and transient piezo-

thermoelastic response of a simply supported cylindrical composite panel composed of angle-ply laminate

and piezoelectric material of crystal class mm2 due to a non-uniform heat supply in the circumferential

direction. As an illustration, we carried out numerical calculations for the angle-ply laminated cylindrical

panel composed of alumina fiber reinforced aluminum composite, associated with a piezoelectric layer of a
cadmium selenide solid and examined the behaviors in the transient state for temperature change, dis-

placement, stress, and electric potential distributions. Though numerical calculation were carried out for a

two-layered anti-symmetric angle-ply laminated cylindrical panel associated with a piezoelectric layer,

numerical calculation for hybrid laminated cylindrical panel with an arbitrary number of layer and arbi-

trary fiber orientation angles, associated with a piezoelectric layer can be carried out. Moreover, we con-

clude that we can evaluate not only all stress components of the combined cylindrical panel, but also the

electric field of the piezoelectric layer quantitatively in a transient state.
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